
UCRL-JC- 129963 
PREPRINT 

Some Aspects of the Hydrodynamics of the 
Microencapsulation Route to NIF Mandrels 

P. M. Gresho 

This paper was prepared for submittal to the 
Target Fabrication Meeting ‘98 

Jackson Hole, WY 
April 19-23, 1998 

October 20,199s 

This is a preprint of a paper intended for publication in a journal or proceedings. 
Since changes may be made before publication, this preprint is made available with 
the understanding that it will not be citedor reproduced without the permission of the 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of 
the United States Government. Neither the United States Government nor the 
University of California nor any of their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States 
Government or the University of California, and shall not be used for advertising 
or product endorsement purposes. 



Some Aspects of the Hydrodynamics of the Microencapsulation 
Route to NIF Mandrels 

P.M. Gresho 

Lawrence Livermore National Labora tory 

1 



Table of Contents 

Abstract 
I. Introduction ...................................................................................... .4 
II. Hydrostatics-the Young-Laplace Eqn ....................................................... 7 

A. The case for a perfect sphere. ............................................................. .7 
B. A simple droplet in a density column ...................................................... 8 
C. A compound / encapsulated droplet ..................................................... 11 

III. Steady Hydrodynamics. ....................................................................... 12 
A. The Navier-Stokes Equations ............................................................ 12 
B . The Steady Stokes Equations ............................................................ 13 

1. Dragforce ............................................................................. 13 
C. Steady Stokes solution for a simple drop.. ............................................. 16 

1. No-slip no longer applies ........................................................... 16 
2. Drag force and terminal speed ..................................................... 18 
3. Is the drop really spherical?. ....................................................... 19 
4. Non-constant su$ace tension: Marangoni jlow ................................ 20 

D. Steady Stokes Flow for a Compound/Encapsulated Drop ........ . ................... 21 
E. Droplet shape for Re>O ) .................................................................. 23 

1. Simple drops in free-fall ............................................................ 23 
2. Simple drop in a linear shearflow ................................................ 24 
3. Compound drop in free-fall ......................................................... 25 

IV. Unsteady Hydrodynamics .................................................................... 25 
A. Capillary (surface tension) waves ....................................................... 27 

1. Ideal waves, simple and compound drops ....................................... 27 
2. Simple viscous drop.. ..................................................................................... .29 
3. Compound viscous drop ............................................................. 30 

B. Time-dependent potential flow, concentric spheres ................................... 30 
1. Potential flow in the shell .......................................................... 31 
2. Potentialjlow in the core and the host .......................................... 32 

C. The solid sphere ........................................................................... 34 
1. Equation of motion for Re = 0 ..................................................... 34 
2. Nonlinear (Re > 0), effects, nonuniform far-fieldflow ....................... 38 

D. The simple drop in Stokes flow .......................................................... 38 
E. The compound drop in Stokes flow ..................................................... 40 

1. Equations of motion ................................................................. 40 
2. Core centering ........................................................................ 45 

V. Applications ..................................................................................... 47 
A. Static droplet in a density column ........................................................ 48 
B. Terminal velocity and loss of spheric&y ................................................ 48 

1. Stokes flow.. .......................................................................... 48 
2. Re > 0 (Navier-Stokes flow) ....................................................... 49 
3. Droplet shape ......................................................................... 49 

C. Droplet shape in a linear shear flow ..................................................... 50 
D. Capillary waves ............................................................................ 50 

1. Inviscid simple drop ................................................................. 50 
2. Viscous simple drop., ................................................................ 50 
3. Inviscid compound drop ............................................................. 51 

E. Initial accelerations ........................................................................ 51 
F. Initial time constants ....................................................................... 52 . 

IV. Conclusions and Future Work ................................................................ 54 
A. Conclusions.. .............................................................................. 54 

2 



B. Future Work.. .............................................................................. 55 
VII. Acknowledgements .......................................................................... 56 
VIII. References .................................................................................... 56 

Fig. 1 Compound drop ................................................................... 60 
Fig. 2 Simple Drop; Steady Streamlines (pi = p,,) ................................... 6 1 
Fig. 3 Streamlines for a Compound Droplet ........................................... 62 
Fig. 4 Rising/Falling Compound Droplets- at U r. ................................. 63 
Fig. 5 First two modes for a compound drop. ........................................ 64 
Fig. 6 
Fig. 7 

Streamlines and Isobars for an (upward) accelerating shell .................. 65 
Stokes’ Law Correction Factor .................................................. 66 

3 



Abstract 

Spherical plastic shells for use as mandrels for the fabrication of ICF (Inertial 
Confinement Fusion) target capsules can be produced by solution-based 
microencapsulation techniques. The specifications for these mandrels in terms of sphericity 
are extremely rigorous, and it is clear that various aspects of the solution hydrodynamics 
associated with their production are important in controlling the quality of the final product. 
This paper explores what we know (and need to know) about the hydrodynamics of the 
microencapsulation process in order to lay the foundation for process improvements as well 
as identify inherent limits. 

I. Introduction 

Target capsules for use at the National Ignition Facility (NIF), beginning in about 
2005, will be about 2 mm in diameter with 150 to 200 pm walls composed of plastic or 
beryllium. Although target designs (see for example Haan, 1995, D&rich, 1997, or other 
papers in this issue of Fusion Technology) are still evolving, it is clear that capsule- 
sphericity and surface finish will be critically important. The current surface specifications 
are presented elsewhere in this volume (Cook et.al., 1998), but it is sufficient to say at this 
point that surface finish and sphericity at least as good as what is currently available with 
0.5 mm diameter Nova-scale capsules will be required, even though the NIF capsules are 
four times as large. 

Most capsule fabrication scenarios involve producing an initial spherical shell (or 
bead) of poly(a-methylstyrene) (PaMS), which is used as the template for the final 
capsule-using methods that need not concern us here. (See numerous papers in this issue 
of Fusion Technology). We will focus exclusively upon the processes that are used to 
produce this initial template shell (or bead). PaMS shells can be produced by 
microencapsulation techniques in which a triple orifice droplet generator produces water 
droplets surrounded by a layer of a non-aqueous solution of PaMS; these compound 
droplets are suspended in an aqueous bath. The microencapsulated droplet can be 
described (see Figure 1) in terms of the radius of the core water droplet and compound 
droplet, R, and R,, respectively. Also shown in Figure 1 is the coordinate frame we will 
use. A significant portion of the paper will deal with the simpler case of a simple droplet 

, (no core) or a solid sphere suspended in an aqueous bath, and for these discussions we will- 
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simply label relevant variables with i and o to represent the droplet (inside) and host fluid 
(outside). The radius of such droplets will simply be given by R. 

With gentle heating of the bath, the organic solvent of the non-aqueous “oil” shell 
dissipates (diffuses) into the aqueous bath (host) leaving a solid polymer shell with an 
aqueous core that can later be air dried to remove the ‘water’. Bead variants on this 
approach avoid the aqueous core (Czechowicz and Stephens, 1998) or directly attempt to 
sphericalize solid PahO beads through a melt phase (Letts et al., 1998). The key to 
success in all of these approaches is to minimize perturbations to the shell or bead 
sphericity. In most of this paper we will focus on only the lowest order capsule 
deformations, and we have as our target “mode 2” deformations of less than 1 pm. The 
need to meet such stringent tolerances has led to the need (or at least the desire) to 
understand the fluid dynamics involved in the fabrication of these shells (or beads) at a very 
basic level, with the hope that such understanding would contribute sufficient additional 
knowledge to the experimental studies so that process improvements could be developed. 

Among the hydrodynamic issues that are relevant to this process are the following: 
(1) Surface tension (our good friend) tries to make droplets attain a spherical shape, (2) 
droplet motion tends to deform the droplets away from spherical, (3) density mismatch 
between core and shell (always present to some extent, although partially controllable) 
tends to cause de-centering of the core (which can also contribute to loss of sphericity) and, 
at its worst, a loss of shell owing to bursting, (4) non-constant surface tension wilI cause 
additional fluid flow that could also cause loss of sphericity, and (5) the (desirable) physics 
of ‘core-centering’, seemingly caused by dynamic perturbations at the two fluid interfaces 
(such as capillary wave generation or externally-imposed acoustic oscillations) needs to be 
better-understood. 



To address these and related issues, we have explored the following fundamental 
fluid dynamic phenomena: (1) The shape of static droplets when density variations tend to 
distort the otherwise-spheres, (2) the terminal (settling) velocity of compound droplets and 
their stability (core remains in shell?), (3) the rate of attainment of terminal velocity, (4) the 
special ‘physics’ of thin-shelled droplets (nearly our case since R, /R, E 0.9), some of 
which is related to potential flows (Re = 00: Re = Reynolds number) and some of which is 
at the other extreme: Stokes flow (Re = 0), (5) the effects of nonlinearity (the advection 
term in the governing Navier-Stokes equations) on droplet spheric@, (6) the temporal 
response and damping rate of droplets that are perturbed from sphericity-via capillary 
wave analysis, (7) the general equations of motion of core and shell, and finally, (8) some 
discussion of the core-centering phenomena. 

Some of the above are treated in a fair amount of detail, including simpler related 
phenomena (often with complete derivations) as a sort of ‘tutorial’, because another 
objective of this paper is to introduce a few perhaps-esoteric fluid-dynamical phenomena to 
that portion of the physics community that is interested in this particular method of target 
fabrication. Others on the list will be treated only briefly, sometimes owing to their extreme 
complexity (we then send the reader to the original research papers), and other times 
because we still don’t know how to do a better job. One of the problems encountered 
during the research phase, which unfortunately happens in any developing field of science, 
is that the history of the detailed analysis and understanding of the dynamics of particles, 
drops, and bubbles is somewhat ‘polluted’ with spurious results . . . most of which 
eventually become corrected. 

We somewhat apologetically (to some) must point out that much of (theoretical) fluid 
mechanics is one or another ‘exercise in applied mathmatics’-which may well blur the 
picture for some readers. Partly for non-mathematically-oriented readers (mathematically- 
challenged?), we present all of the ‘theory’ in the bulk of the paper and save applications 
of the theory to the last section. This may be useful to those who are more interested in the 
‘bottom line’ than the details of how we got there. If this turns out to be the majority, 
please except our apologies for too much deflectionary detail. 



II. Hydrostatics-the Young-Laplace Eqn. 

A. The case for a perfect sphere. 

We begin ‘statically’, u = 0, for simplicity. The static shape of ‘free’ fluid surfaces is 
governed largely by the so-called Young-Laplace eqn. (sometimes called Laplaces’ 
formula), which applies pointwise at a stationary interface: 

AP=2yH=y(k, +k2)=Y(~+&)=Ip.n=rV,.n, (1) 

where AP is the pressure jump across the interface, y is the interfacial (surface) tension, 
H is the mean curvature, k, andk, are the principal curvatures, R, and R2 are the two 
principal radii of curvature, n is the unit normal vector, and V, is the (2-dimensional) 
surface gradient. (V . n = V, . n because : 

V,.n~[(b-nn).V].n=(V-nn.V).n=V.n-n(n.V).n=V.n-ninian,/~j=V.n 

-$nj dn2/axj = V. it because n,’ = 1 and thus &2/dxj = 0). In a gravitational field with 

constant density fluids, AP is replaced by AP+Apgz and the static condition can then 
only exist if appropriate “boundary conditions” (BC’s) permit it-or if 2yH is very large 

relative to the hydrostatic pressures. An appeal to authority seems appropriate at this point 
(Batchelor 1967): “A case in which the equilibrium shape of the interface is obvious is that 
of a mass of one fluid immersed in a second fluid, e.g. a mist droplet in air or a gas bubble 
in water. Provided that either the volume of the drop or bubble or the difference between 
the densities of the two sides of the interface is sufficiently small, we may ignore the effect 
of gravity. The pressure is then uniform in each fluid and the pressure jump in (1) is 
constant over the interface. An unbounded surface with a constant sum of principal 
curvatures is spherical, and this must be the equilibrium shape of the surface. This result 
also follows from the fact that in a state of (stable) equilibrium the energy of the surface 
must be a minimum consistent with a given value of the volume of the drop or bubble, and 
a sphere is the shape which has least surface area for given volume.” For a sphere, (1) of 

course simplifies to 

AP=2y/R, (2) 

which relates the outside to inside pressure (both constant) for a (simple) spherical drop of 

radius R ; Lide = Pordkle + 2Y I R’ Cmide because y acts like a skin under tension. - 



9. A simple droplet in a density column 

This is a situation in which a droplet could remain motionless even though Ap # 0; i.e. 
a constant density droplet (pO) in a (linearly) stably - stratified “host” fluid, with density 

p(z) = Po(l - Pz) ’ (3) 

where p << l/R and the origin of the (vertical, upward-pointing) coordinate system was 

taken to be at the droplet’s equilibrium position, will no longer be spherical. The Young- 
Laplace equation can be used to obtain, analytically, the droplet’s shape on the assumption 
(valid for most cases of interest to us) that its shape is very close to spherical. This is done 
as follows (with special thanks to Howard Stone): 

(i) The hydrostatic pressure in the drop is (via C’f’/& = -Pg) 

e(z)= Fl --P&Z 

and that outside the drop is 

P,(z)=P~-p,gz+~pogpz2 , 

where PI andPz are constants. 

(ii) The Young-Laplace equation now gives 

fl.n = (PI 4%)~jpogpz2 , 

(4) 

(5) 

(6) 

where z is now on the drop stl$zce. 

(iii) The curvature can be obtained via the so-called “method of domain perturbations” 
(e.g. Lea1 1992) by assuming an axisymmetric droplet shape of the form 
r(e) = R[l+ g(o)], or 

F(Y,@ = 0 = I - R[l+ E@)] , (7) 

where R is the nominal (and constant) drop radius and 6~~1. The unit normal vector at 
r(0) is then 

n = VF/\VFj , (8) 



where 

= e, -e, Exf’(f3) , 
r 

(9) 

where e,.,es are the unit vectors, in (axi-symmetric) spherical coordinates, in the 

r - and 8 - directions, respectively. 

Thus, IVF/’ = 1 +[ ERf’(0)/r]2 and 

e, -e, gf’(t) 
’ = Ja sernr+e9nQ * 

(10) 

Finally, 

Van = +$ (r2nr)+& f-(nosin@) , 

and we will treat-and approximate--each term separately. 

(1) :(r2nJ=$ &&] 

=${r*[l--+(ERf’/r)*]}+O(s3)z2r. 

(2) 

= -~~(f’(e)sine[l-~(ERf~/r)*]} - 

c0sB+f”@)sid3+c+*)}. 

Thus, to O(E”), we have, using i z $(l - If), 
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1 v.n=-- 
R 1 [ 

2-&2f+ gfYe)+f"(e)]j* 

(iv) Next, (6) gives, using z - = Rcose on the surface, again to O(E*), 

I) =PI -P2-~pog/?R2cos2e, or 

E 
[ 
f"(e)+ 'Ose ~fye)+2f(e)]=2-R(P1~F2)+pO$R3c0~*e. 

Finally, since /I << 1, we can identify E with p via 

E ~ PO&m3 
2Y ’ 

a (stratification) Bond number, to give, finally, 

f"(s)+~fye)+2f(e)=cos'e+~ 2- E[ R(y)]+qE). 

as the governing equation-along with (7)-for the surface shape, 

(v) The solution to this linear ODE that satisfies f '(0) = f '(n / 2) = 0 

is, to O(E) , 

f(e)=ci2+$sin*e. 

(vi) In order to conserve volume to O(E), it is required that 

jf(b)sid3dO=o 
0 

which requires that c = --x to give 

E - c = $(I + c/6) + O(E”) ; [cf. (2)] and 

(12) 

(13) 

(14) 

(15) 

(16) 

(17). 
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the final solution is 

f(e)=-&+$sin*e 

=-J-[3c0s*e-i] 

= -+0se), 

where P2 is the second-order Legendre polynominal (“mode 2”). 

Remark: For small E, P2 (cos 0) gives a droplet shape that is very close to an oblate 

ellipsoid (fatter at the equator, thinner at the poles-like Mother Earth). 

(vi) Finally, the droplet shape (the object of the exercise) is given by 

r(e)=R 
[ 
I- pogpR3 -4 (c0se) 

12Y 1 , 

giving a MOOR (Maximum-out-of-Round) of 

MooR=2[+/2)-r(0)]=pogpR4/4y= &/2 

(18) 

(19) 

(20) 

which is accurate to O(E’) an , o course, is only valid if E << 1. d f 

To conclude this section, we note that a static configuration requires a constant surface 
tension-which may not always be the case when thermal or concentration gradients are 
present-the latter possibly occur-r-in g if surfactants are present. We shall return to this 
“Marangoni effect” in a later section after we permit fluid motion. 

C. A compound / encapsulated droplet 

For this case, we can only have a truly static situation if the densities of the three liquids 
are all the same. The droplet will then still be spherical, with (2) applying in both core and 
shell ; i.e., we then have, in the absence of gravity (or the ‘dominance’ of surface tension) 

and 
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(22) 

The core pressure could be “large” for small droplets. Note that (21) and (22) do not 
. require concentric core and shell. 

If gravity is present, the pressures are no longer constant because &osr is no longer 

constant; it is 

P host = PO-P@ 3 (23) 

where PO is an arbitrary constant. Again, core centering is not required-although we 
clearly must always have (for complete encapsulation), d < R, - R, , where d is the 

distance between centers. 

A compound droplet in a density column (linearly stably-stratified, as before, for 
simplicity) can only be in static equilibrium if p, =p, and, using (3), p, =po , where now 

the origin of z is at the shell’s center-that of the core being irrelevant. In this case, the 
Young-Laplace equation can again be solved approximately to give (i) a shell shape given 
by (19), and (ii) a core that is spherical-a pair of results that is, unfortunately, in the 
opposite sense to that desired for target fabrication. We want a spherical shell, the core 
sphericity mattering less; c’est la vie-and this brings us to the end of hydrostatics. 

III. Steady Hydrodynamics 

A. The Navier-Stokes Equations 

Since virtually all of the equations to follow are some sort of simplification of the 
incompressible Navier-Stokes equations (see Gresho and Sani 1998 for details regarding 
these equations), we begin by stating them-the conservations ‘laws’ for momentum and 
mass, respectively: 

u~vu+v(P/p)=vv*u+ f , (24) 

and v*u=o (25) 

where u is the velocity and P the pressure. The vector f is a body ‘force’ (e.g. gravity, 
g ), v = pulp is the (constant) kinematic viscosity, p (also constant) is the viscosity and 
p is the constant density. If we have a ‘slightly’ variable fluid density in a gravity field,- 
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owing to thermal or concentration inhomogenieties, the body force term becomes 
f = APW 

PO 
s with p. still constant, and Ap << p. and obtained by simultaneously 

solving the conservation equation for temperature (energy) and / or species 
concentration-a situation deemed too complex for out present purposes. 

In the sequel, we shall also usually assume that the Reynolds number, 

Re = U,R/v , (26) 

where UC is a characteristic velocity of the flow, is very small-Re << l-which justifies 

the neglect of the nonlinear inertial/advection term, u. Vu , from (24). The result is the 

Stokes equations, which are linear and subject to some analytical solutions for special 
cases-considered next. 

B. The Steady Stokes Equations 

The simplest situation of interest here in which a nonzero velocity is present is 
described by 

VP = )uv*u+pg (27) 

and (25), and the plan is to show (in summary form) how these can be used to find the 
drag force and the terminal velocity , uT = L+ e,, for a freely falling sphere-first for a 

rigid (solid) particle, then (in the next two sections) for a simple droplet, and finally for a 
compound droplet, the latter two of which also require proving that the moving drops 
actually remain spherical. 

1. Drug force 

For a sphere translating at a fixed velocity through a quiescent unbounded fluid-or, 
what is the same and somewhat simpler to deal with initially-the steady flow past a fixed 
sphere in an unbounded fluid, the Stokes equations for axisymmetric flow become, in 
spherical coordinates, 
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idr2Ll + 
r2 Jr ( 1 

’ a r --(ug sine)=0 , 
rsinf3 de v3c) and 

and the BC’s are 

ll,=ug=o at r = R (on the sphere) (28 W 

u,=u,cosf3 and u, =-u,sin8 at r+m, (28 f9g) 

where u, is the unidirectional velocity far from the sphere. The solution, first found by 

Stokes himself in 185 1, can be obtained by ‘guessing’ the following forms; 

u, =umf(r) case , 

U@ =u&r) sin e , 

(294 

Wb) 

and P = PO -pgrcos8+h(r)c0s8 , (29~) 

from which (28) yields a coupled set of ODE’s for f, g, and h, which can be combined 
(see, e.g. Lea1 1992 for details) into a single fourth order ODE: 

$i (4+r3 y+g f” +f’=O, 

which is Euler’s differential equation, having simple solutions of the form f(r)=rk , 
where (here) k=-3, -1, 0, and 2. Upon applying the easily-derived BC’s for f(r), the 
‘final’ solution, with g(r) and h(r) f o 11 owing from (28~) and (28b), respectively, is 

and c0se. 

(314 

t3lb) 

(31c) 
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We arefinulfy ready to compute the drag force, some of which comes from shear stress 
and the rest of which comes from the pressure. The shear stress is 

in general, and 

(32) 

in particular-from (31a) and (31b). The z-component of the resulting viscous force (the 
flow at infinity is in the z-direction) is the viscous friction/drag which, after integrating over 
the surface of the sphere, is 

- sin 0) R* sin 8 de 
0 (33) 

=4?pu, . 

The z-component of the pressure force is - PcosB and its contribution to the drag is 
thus (noting that the normal viscous stress, z, = 2,~ &1,/G% =0 at r = R) 

Fp =4(-P[r=, . cos 0) R2 sin 8 de 
0 (34) 

the former (the buoyancy force of the fluid on the solid) coming from the hydrostatic 
portion of the pressure (-pgrcos 0) and the latter from the “viscous” pressure (the 
constant portion integrates to zero). The sum of F, and Fp is the total “drag” felt by the 

sphere: 

the latter term being the famous “Stokes law.” Note that 213 of the viscous drag comes 
from the shear stress and l/3 from the pressure (the so-called “form drag”). 
2. Terminal Velocity 
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It is now a very simple matter to determine the terminal velocity: just equate the 
upward-directed force by the fluid and given by (35) to the downward force caused by 
gravity acting on the solid sphere of density p,; i.e., 

or (36) 

which is positive for a falling sphere (p, > p) and negative for a buoyant one (ps <‘p) . 

[Recall that IA_ is the relative fluid velocity.] Later, we shall see how quickly u; is 
approached by solving the transient Stokes equations for a sphere released from rest. 
Now, we shall move up just a small step in complexity by changing the solid sphere to a 
liquid one-to present the so-called Hadamard-Rybczynski solution (e.g. Levich 1962). 

C. Steady Stokes solution for a simple drop 

There are four new and noteworthy aspects of the fluid-fluid problem, vis-a-vis the 
fluid-solid problem just discussed: (1) The no-slip condition is no longer appropriate, being 
replaced by a tangential force balance, (2) The terminal velocity is different, (3) It’s not at 
all obvious that the droplet will remain spherical, and (4) Non-constant surface tension 
induces an additional tangential flow at the interface. 

1. No-slip no longer applies 

The simple BC’s for the solid sphere, (28d)-no penetration-and (28e)-no slip- 
are in general replaced by normal and tangential force balances (inside to outside of the 
drop’s surface) beginning with that for constant surface tension: 

(37) 

where q - Vui + (Vu,)* and z. = Vu, + (VU,)~ (38 ah) 

are the inside and outside strain-rate tensors-and it is worth noting that the famous- 
Young-Laplace equation is now relegated to a mere portion of a mere BC for the 
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(Navier)-Stokes equations. This is the total (vector) force balance, the normal (Ah) and 

tangential portions being 

and O=n.[pi q - po z,]*t ) 

(394 

t39b) 

respectively, where (in 2D axisymmetric flow), t is a unit tangent vector in the interface. 

Specialized to a spherical droplet (assumed for now, verified later-the ‘easy’ way 
out), the normal and tangential BCs become: (28d) for the normal, and, from (32), (28d,e), 
and (39b), 

lui a<& /r)/&- = /lo d( u,O/r) /fib- (40) 

at r = R for the tangential BC. [At this point we simply a~~urne that the solution using 
(28d) will also satisfy (39a); see below.] 

These BC’s are applied to two sets of Stokes equations (28a thru 28c), one for the 
inside of the drop and one for the outside (host fluid). Using the same method as for the 
solid sphere (for alternate methods, see e.g., Leal 1992, Batchelor 1967, or Landau and 
Lifshitz 1959) gives a ‘ generalized’ version of (3 l), with il= ~i/ruo : 

with 

u,” = 11, i l--1-.- 3RA+!4+iR3 (1 
2 r a+1 2 r 

.- a 1 case 
a+1 

Po=Co 

which recovers (3 1) for pi -+ 00. 

Also, for the internal flow, 

11; =-u m [ai)z]cos@ 2(;+*) ’ 

(414 

t4lb) 

(4W 

(414 
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can d 

11; = u, [l-2(%)‘] sine- 2(:il) , 

5p,11 r 4 = Co - p,grcos8+A a 
* xcos8.- 

+2Y 
R / a+1 R’ 

(414 

(410 

Fig. 2, from Kim and Karrila (1991), shows a typical set of streamlines (,Ui = ,u~). 

2. Drag force and terminal speed 

From the outer solution, we obtain in an analogous way as for the solid sphere, except that 
in this case the normal viscous stress also contributes to the drag (It was zero for the solid 
sphere.), 

FD = $R3p,g+6qq,Ru_. %+&I~0 
l+&lrUo 

(42) 

for the drag which, when equated to the sphere’s weight 
(k3 * u,): 

gives the terminal velocity 

= 11; . ’ + 4 1’0 
%+&l”o ’ 

(43) 

a weak function of viscosity which recovers FD andu;‘. for the solid sphere, (35) and (36), 
as pi 3 00. More noteworthy (because it is new) is the other limit, Iui -+ 0 (the inner 
fluid becomes more like a gas with zrs = 0), giving, from the pressure term and the normal 

4 8 R2 viscous stress, F, = -ltR3pOgi-4n&jRum and L+ = --( 
3 

3 ~ pi - p,) which, since p, > pi, 
0 

describes the steady rise rate of a small gas bubble-50% higher than that of a solid with 
the same density. 

It is interesting to re-examine the pressure fields when u_ = ur; from (41~) and (41f) 

we obtain, using (43), 

and 

PO = Co - p,Sz - $(Pi - Po)g 
0 f 

2 

cog 8 

< = Co + 2y/R - PigZ + : R( pi - p,)g a cose------ a++’ 

(44) 

(45)‘ 
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giving 2~ 4 a-i (P&J, =-+- ‘-(pi - pJgRcOse , 
R 9 a+2/j (46) 

which merits the following remarks: 

1. For pi > ,uO, the AR at the bottom (0 = 7c)is less than 2yl R and that at the top is 
larger than 2yl R-because viscous effects caused by flow are stronger than the net 
buoyancy force. If pi < y,, the opposite is true (buoyancy is stronger). 

2. The external pressure is independent of viscosity (as indeed it is also for the falling 
solid sphere). 

3. Whereas Af, =2ylR isthesameas <- PO = 2yl R for the static case, it is no longer 

true that the pressure difference is simply 2yl R when there is flow. 

4. The exceptional special case is that for pi = &, for which AP = 2 y / R for all 0. 

3. Is the drop really spherical? 

To verify the assumption of a spherical shape requires that the putative solution satisfy 
exactly the normal stress balance at the interface--(39a) for R = RO = R. 

Assuming (still) a spherical shape, (39a) becomes, for the jump in normal stress at r = R, 

which gives, upon inserting the solution from (41), 

3jd 3a.2 
(P,-Pi)gR+~.-- a.+1 1 cose=2y/R 

which is only satisfied if both 

(48) 

(49) 

(50) - 
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which makes the normal force difference independent of 8, and 

which relates the 2 ‘arbitrary’ constants in the pressure fields. Noting that u, = ur [cf. 

(43)] leads to the following important conclusion: The simple droplet in Ifree-full’ retains 
its spherical shape when at its terminal velocity (even for y + O!). “For virtually any 

other problem involving the motion of bubbles or drops in a viscous fluid, the shape would 
be nonspherical”-Leal 1992, p. 212). It will turn out, however, that God is good and, as 
we shall point out later, the drop actually remains spherical during the transition period that 
is described by the transient Stokes equations (We will, of course still need 
Re f 0 - u . Vu negligible). 

4. Non-constant surface tension: Marangoni flow 

If y is not independent of temperature and/or concentration, the tangential stress 
balance, given thus far by (39b), needs another term because a variable y along the 

surfaces produces a variable shear stress there. Thus, (39b) and (40) must be generalized to 
(for a sphere-for simplicity; thus not fully general) 

(52) 

at r = R, and we have (still) assumed axisymmetry; the jump in shear stress is proportional 
to the surface tension gradient-which itself is (usually) nonzero only by virtue of a surface 
concentration or temperature gradient. As the former is probably more important for our 
situation, we write y = y(C) and Jy/&3=* /JC. &C/a@, where C represents 
concentration of some solute, and it is often true that y(C) = y,[ 1 - a(C - Co)]; i.e., a 

linear variation is a good approximation. 

But we take it no further-for now. All that can be said in general is that a variable y 

will cause the velocity fields in both drop and host to differ from those very special 
solutions that permitted a spherical shape. Thus, the Marangoni effect (flows caused by 
non-constant y) can lead to a loss of spheric&y and is thus to be avoided if possible. 
Actually, for a( C - C,) << 1, Edwards et al. (1991) show that the droplet will still remain 

spherical-at a slightly smaller terminal velocity. 
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D. Steady Stokes Flow for a Compound/Encapsulated Drop 

This last case, while much more appropriate than those previously considered, is also 
very much more difficult-depending as it does on 2 densities and 3 viscosities, the radius 
ratio (R, /R,), and the eccentricity/offset. Thus, it is not suprising that closed form 

solutions are not to be found. Hence, we shall content ourselves in providing just a brief 
summary of those few relevant results that we have found in the literature. Fig. 3 shows a 
qualitative sketch of the flow field for such a drop. 

On the assumption that the core is concentric and thus motionless (no translation) 
relative to the shell, Brunn and Roden (1985) obtained the potentially important result that 
both core and shell are still perfect spheres (for droplets at their terminal velocity and 
Re = 0)-a result that, like the simple drop, even holds true for yC and yS + 0. 

Another of their conclusions-which is suspicicious owing to their (untested) 
assumption that concentricity prevails-is this: In order that a solution of the equations of 
motion of core and shell exist (at terminal velocity), it is only necessary that 
(Ps - P,>/(Pc - PJ < 0; i.e., p, - pH < 0 M p, - p, > 0, a result they themselves call 

“astonishing.” 

In an earlier paper employing the same assumptions (concentric spheres with no relative 
translational velocity between core and shell), Rushton and Davies (1983) obtained the 
following result for terminal velocity: Ll,,lid <u,,,,,~,,~,~ < uSimPre which, when combined with 

other known results, leads to the following ‘cascade’ of inequalities for terminal speeds (at 
equal Ap): 

where “bubble” means pi = 0. The range of terminal speeds is, somewhat surprisingly, 

rather narrow. This ‘reasons’ for these inequalities are as follows: 

6) %ompound > Z4,,lidbt3XiUSe the largest drag is that from the no-slip (solid) boundary 

condition. The non-zero tangential velocity at the liquid-liquid (shell-host) interface reduces 
the shear stress there. 

cii) Ucompound < LLsimple because flow in the core necessarily reduces shell flow which 

reduces the tangential velocity at the shell-host interface. 
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ciii) L1sirnplr < L1bublde because a stress-free (bubble) tangential condition results in the largest 

tangential velocity and smallest shear stress. 

Another important result ‘discovered’ by these authors and since verified by others is 
this: For R, + I$, the ‘reversed’ flow in the shell (see Fig. 3) causes the viscous shear 

stresses to become so large that all flow ceases in both shell and core; a thin-walled 
compound droplet (with concentric core) behaves much like a solid sphere-a result of 
which is that lubrication theory (Stokes flow, basically; see, e.g. Batchelor 1967) will 
apply in both core and shell even for finite Reynolds number-as long as the shell is 
sufficiently thin. 

In Sadhal and Oguz (19S5), which is rather more general in that, while they 
permit/consider both eccentric locations of core-in-shell and determine under what 
conditions the core remains (translationally) motionless with respect to the shell 
(equilibrium configurations) at terminal velocity, they do so only with the assumption of 
perfect sphericity for core and shell (e.g. large surface tensions, small drops)-thus leading 
to more believable results than those of their predecessors. Under these conditions, their 
salient results of most interest to us are as follows (see too Fig. 4): 

1. If PJ+Ps wP*(K+Y) h w ere V=volume, the rising droplet can be in equilibrium 

(both core and shell translating upward at the same terminal velocity) if and only if p, > p, 

because the shear stress (and pressure, probably) on the core is trying to lift the core 
relative to the shell. The stable orientation is then one in which the core sits toward the front 
of the rising shell; i.e. it is not concentric. 

2. If pcV,+p, v, > pH (V, + V,), the falling droplet can only be in equilibrium if the core is 

less dense than the shell because the shear stress (and pressure, probably) from the shell is 
trying to pull the core downward. Under these conditions, the stable orientation has the 
core situated toward the rear of the falling shell. (I.e., in both stable motions, the core’s 
center is located above the center of the shell. This latter case was also observed in the 
laboratory (Hamilton et al., 1997). 

3. If PC = P& PH) in either of the above two cases, the motion is actually 

unstable-relative translation of the core must occur. 

4. The stable solutions in 1) and 2) above are actually only realizable for specific ranges of 
both physical properties and radius ratio, R,/R,. A stable steady Stokes solution of a‘ 
compound droplet with unmatched densities is, in general, not easy to obtain! This is 
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(presumably) one reason that most target fabrication efforts via encapsulation to date have 
used time-dependent fluid dynamics-a subject we shall soon turn to. 

E. Droplet shape for Re>O, 

This section too, is mostly a brief literature review. We will summarize the available 
knowledge that examines the nonlinear effects that accompany the case of Re > O-via 
perturbation analyses, first for simple drops and then for compound drops. 

1. Simple drops in free-fall 

Taylor and Acrivos (1964), in what has been called a “classic” paper, broke the 
nonlinear ground via singular perturbation analysis-not long after the method had first 
been discovered/invented by Proudman and Pearson (1957). The analysis is (necessarily) 
long and complicated and we shall therefore skip the details. By examining the normal 
stress balance at the interface at terminal speed, which is now not independent of 8, they 
obtained the perturbed shape of the drop by finding c(6) in [cf. (7)] 

G9 = R[l - <WI, (54) 

where R is the equivalent (same volume) spherical radius, as 

(55) 

where f(p,p) = (56) 

which is a very weak function of p and p, varying only from -0.21 for a gaseous interior 
(,~&p + 0, a bubble) to -0.25 for a solid interior (p -+ -). These authors also give the 
next term in the series expansion [to 0(u3P3(0))] and Brignell (1973) gives the next two 
after these-none of which we feel are needed in our mostly ‘first-order’ analysis. Noting 
that P2(7c/2) = -l/2 and P2(0) = 1 shows that the droplet shape is basically that of an 
oblate spheroid-and the result is only valid for Re < O(1) and p,ug R/y << 1; i.e.; 

Cu. Re < O(l), where Re = z+ R/v0 and Ca = ,u, ur/y is the cavitation number (and 
Ca . Re = We, the Weber number; We = p& R/y). Review: Re < 1 a inertial forces < 
viscous forces and Ca < 13 viscous forces < surface tension forces (both of which 
together + < << 1). 
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To the same order of approximation, the terminal velocity is 

llT = 11; f ’ + Pi lluo . l- 3 u;R 

2/3 + Pi /PO [ 1 *v +o(u;)” ) (57) 

where U; is the solid sphere’s terminal velocity-cf. (36) and (43); and we must have 
UT R/V << 1; the nonlinear terms cause a reduction in the terminal speed (a larger drag 
coefficient) from that for Re = 0. Note that (57) corresponds approximately to the Oseen 
correction to the Stokes flow result for a simple (,q = -) drop and we point out that using 
the geometric mean of the Stokes drag and the Oseen drag, at least for solid spheres, 
generates a pretty accurate result for Re up to 50 or so and is probably better than (57) even 
for a simple drop: 

(58) 

which is about 2% low at Ll.;-R -=50 and ,LL~=w. (The Oseen approximation, (57), for 
the same case is a factor of agout 4.5 too low and the Stokes solution a factor of -4.4 too 
high.) 

Inserting +. from (57) into (55), and c(6)from (55) into (54) gives the departure 
from sphericity [cf. (20)]: 

MOOR = 3f @ ,p> . pp; X2/y , (59) 

where f G 0.23. It is worthwhile noting that this result, combined with (57) and (36), 
shows that, to zeroth order (Stokes; omit the g term) 

(60) 

i.e., it varies with the 6th power of the terminal speed! [For Re > 0 the R-dependence is 
somewhat less-perhaps 0( R4-5)]. Tk ’ IS result alone kelps to explain why large drops 
are muck more difSicult to keep spherical than small ones-at least in a free-fall mode. 

2. Simple drop in a linear shear flow 

Another variation on the droplet deformation in a moving medium was provided by 
Barth&s-Biesel and Acrivos (1973); this time for a droplet “suspended” in a general linear- 
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shear field. Although they were primarily interested in large deformations and droplet 
breakup, they do supply some results that are of interest here. Specifically, for a given 
shear rate, G(= AU/AX), their Fig. 6 shows that 

MOOR z 4&R z. 4pu,G R2/y (61) 

where, for our purposes, G may be related to a rotation rate, w = 2@, and a container 
radius, 5, via G E (wr,)/r, = w = 2~13. 

3. Compound drop in free-fall 

Returning to Brunn and Roden (1985), these authors also obtained a linearized result 
(small Re) for shell deformation-again under the same, rather stringent assumption that 
the core remains at the center of the shell. They then, in a sense, generalized the Taylor- 
Acrivos results for a simple droplet to a (concentric) compound droplet. With respect to 
droplet shape, their key results are the following: 

(1) for Re = 0, the compound droplet remains spherical, even if the surface tensions 
tend toward zero. 

(2) The shell outer surface deforms into an oblate spheroid (P,-mode, as usual), like a 
simple drop. 

(3) The core deforms into a ( P2 -mode) prolate spheroid. 

(4) Thus, the shell thickness is a minimum at the poles and a maximum at the equator. 

(5) The ma,titude of each perturbation is again proportional to the appropriate Weber 
number, pju; Rj/yj , which again must be small for the results to be valid. 

IV. Unsteady Hydrodynamics 

For all time-dependent motion, the starting point is (25) and the time-dependent 
version of (24): 

$+u.Vu+V(P,p) = vv%+ f (62) 

which, when u . Vu is small enough to be neglected (Re << 1)) gives the transient Stokes 
equations. A completely ‘opposite’ assumption-that (only) the viscous term, vV2u, is‘ 
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negligible-gives the Euler equations. And this, plus one more sometimes-valid 
assumption-irrotational/potential flow-leads to the ‘ideal’ flow momentum conservation 
equation (with the body force neglected) 

$+v(P/p++q2) = 0 (63) 

where q = 1~1 and we have used the vector identity u. Vu = iV(u. u) -u x (V x u) with 
V x u = 0 (irrotational). The quantity PT = P + ipq2 is the total, or Bernoulli, pressure. 

Since u is curl-free when (63) applies, we can define a scalar @, the velocity 
potential, via 

u=np. (64) 

Equation (25) then gives 

v2ql = 0 (65) 

and (63) gives 

J$ at+ P/p++42 = F(t) , (66) 

which, when the arbitrary function of time, F(t), is set to zero, is the equation for the 
pressure. Thus, given appropriate boundary conditions, the solution of Laplaces’ equation, 
(69, gives the potential from which (64) gives the velocity and (66) the pressure: 

de P=-p --$+$q2 . 
( ) 

(67) 

The transient Stokes equations will be of use in estimating the time required to attain 
terminal velocity-and the ideal/potential flow equations will be useful for estimating the 
frequency of capillary/surface waves and the pressure forces on core and shell under 
transient conditions of accelerated flow. Both extremes will be used to estimate the viscous 
damping rate of capillary waves and, finally, for approximating the ‘bulk’/global equations 
of (translational) motion for both core and shell. 
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A. Capillary (surface tension) waves 

In response to the question, “How does a droplet (simple or compound) respond to a 
given perturbation from an equilibrium (spherical) shape ?,” Saffren et al. (1982) studied an 
ideal compound (and simple) drop and Miller and Striven (1968) examined a viscous 
simple drop-whose results we shall summarize below. 

1. Ideal waves, simple and compound drops 

In an early and important fluid dynamics paper on droplet dynamics that probably 
deserves wider dissemination, Saffren et al. (1981) determined the ‘normal modes’ 
(capillary surface waves) that could exist at the two interfaces between the 3 inviscid fluids 
comprising an ideal (concentric) compound drop. The normal mode analysis is an 
eigenvalue problem, obtained by assuming time-dependence of the form eim and 
linearizing the resulting equations, where w (the wave frequency) is the eigenvalue and the 
concomitant surface shape(s) the eigenvector. The solution [of (63), basically] is obtained 
in terms of spherical harmonics, and the results are: 

(i) Simple drop (not a new result, of course) 

where wi is the (inviscid) frequency of the IZ - th mode. This result, at least for 
p, = 0, is well-known; see, e.g. Landau and Lifshitz (1959), Chandrasekar 
(1961). For p, f 0, it is derived in Lamb (1945). For n = 2, the mode of most 
interest [ iz = 0 is a purely radial mode, precluded by incompressibility (Landau 
and Lifshitz 1959) and n = 1 corresponds to pure translation] and p, z pi, 

(-& 4.8y . I-- PR3 
(69) 

(ii) Compound drop (a new result) 
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where Ad” 5 l+ (n + l)(p, - P,$> R, 
1 

(2n + UP, Ii i Rc 

and c ~ (n + MP, - PA. HP, - PJ 
n 

(2n + UP, (2n+l)p, ’ 

and we admit to not checking their ‘algebra’. For the thin-shell limit (R, = R,)the 
frequency is simply that given by (68) with y replaced by y, + y,; two surfaces, two 
surface tensions, higher frequency (bubble mode only, of course). 

The high-frequency mode (for each n) is called the “bubble” mode, in which core 
and shell oscillate in-phase. The low-frequency out-of-phase mode, pi)-, is called the 
“sloshing” mode, which involves significantly more ‘tangential’ flow than does the bubble 
mode. For the principle (low) mode of interest, y1 = 2(P, mode), these ‘simplify’ to 

where now 

(71) 

Fig. 5, taken from the above reference, shows the two modes for an oil (silicone)/water/oil 
droplet. 
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2. Simple viscous drop 

For the (non-simple) case of a simple viscous drop, Miller and Striven (1968) solved 
the eigenproblem obtained from the transient Stokes equations, via eim . e-“’ 
time-dependence, where z is the viscous damping time constant, with the result of most 
interest here being that for finite but ‘small’ viscosities (for ‘large’ viscosities, they predict 
a monotonic decay; i.e. no oscillations): 

0, = co,’ - (7-n + 1)2Jw~/Ji~oPiPo 
2RJZ[np, + Cn + l)Pi][m + JZL] ’ 

m&Aq, , 

(72) 

where CO: is the frictionless frequency, given by (68), and the decay rate, il = z-l, is given 

by 

z -1 =Awn+(2n+U{2( 

the first term coming from a boundary layer effect at T- = R and the second corresponding 
to dissipation outside of the boundary layer [whose thickness z 0(,/K)]. 

For the y1= 2 mode and pi G PO, 

2.5&&X 
Aw2 = R&f&+&) 

(74) 

and 

z-i = Aw + 6,$ +16~Z +3Pipo 

2 ~PR’(&-+&)~ ’ 

which are the results we shall use. 

(75) 

Remark: In a paper discovered during the final typing of this paper, Basaran et al. (1989) 
show an additional term, overlooked by Miller and Striven, that reduces 7-l in (73). For 
our parameters, however, the change is negigible-although further work in the area 
should probably incorporate these newer results in more detail. 
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3. Compound viscous drop 

Landman (1985) performed a ‘partial’ analysis of a compound drop, accounting for 
viscous effects in core and shell but not in the host. (The compound drop is in a gas, or a 
vacuum). Also not accounted for was fluid acceleration; i.e. she set &l& = 0 to obtain the 
stencty Stokes equations, with the only time-dependence then being that of the free surface 
shape. With these assumptions, she found that perturbations are always overdamped-no 
oscillations. Also, the dominant mode (n = 2) displayed out-of-phase behavior between 
core and shell-the sloshing mode. The bubble mode decays more quickly. These results 
are, in a sense, opposite those from Saffren et al. (1981) for the inviscid case and, since 
they seem to predict no oscillations for virtually any values of pi and pO, they are 
somewhat suspect. Clearly the neglect of the acceleration term in the Stokes equations can 
only be sometimes justified (and was not done by Miller and Striven who, for the simple 
drop, obtained the more reasonable results of sometimes underdamped and sometimes 
overdamped oscillatory decay-depending on the properties). E.g., if z = R2 /V is the 
viscous decay time constant, the steady-state assumption would seem to require 
z << T = 2nllpR314;8y----the period of oscillation, from (69). This 
3 R << 4n2pv2 14.8~ which, for our nominal parameter values 
(p = 1, v = .Ol, y = lo---all in cgs units), gives R << 0.8p--a very tiny drop! Using 
v = 1 as a guess for the shell’s viscosity, increases this to R << 0.8 cm which just might 
cover our case. On the other hand, if the viscous time constant is based on the shell 
thickness rather than on the radius-which may actually be more reasonable, z << T leads 

to AR = R, - R, << [27rv&i5ii7 which, for the above parameters and R = 0.1 cm, 

yields AR << 170pm, which is closer being satisfied for the case of interest. Replacing 
v = .Ol by v = 1 increases it even further-to AR << 1.7 cm, which is surely satisfied. 

Perhaps we should be content just to draw the conclusion, from Miller and Striven 
and from Landman, that any oscillations of a compound drop will be very quickly damped 
by viscosity-the calculations of which for the viscous drop will be presented in more 
detail later, under “Applications”, 

B. Time-dependent potential flow, concentric spheres 

As mentioned already, the theory of time-dependent potential flow (inviscid, 
irrotational) is useful for estimating some of the additional forces felt by core and shell 
during time-varying situations. In this section we will generate a simple potential flow 
‘model’ which, while definitely quite restrictive in application owing to some stringent 
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assumptions needed to derive it, may actually be quite useful, partly because of the 
additional insight that it provides. Thus, for the special case of concentric configurations, 
we shall first examine the potential flow and (especially) accelerating potential flow 
between core and shell, followed by that in the core and the host-and point out one 
advantage accruing from thin shells. 

1. Potential flow in the shell 

Suppose, instantaneously, that the z-component of the core velocity (u,) is given, as 
is that of the shell (U,)-in the concentric configuration. The potential flow in the shell for 
this case is governed by (with u 3 V@) 

v2~=i[g(r2~)+~-f-(sint!l~)]=0 inR, <r< R, , 

with d$fdr = u, case at r = R, and &$f&- = us case at r = $ . 

The solution for the potential field is 

e= 
(usR,’ _ uc~2)r + C’s -“c)R~R~ 

2r2 
R,’ - R,’ 

-c0se , 

from which the velocities may be obtained: 

-c0se 

and u =~?!!f.=- 
(usR,’ - u,R;) + 

2r3 6 r de R,’ - R,’ 
*sin8 . 

(76) 

(77) 

(78) 

(79) 

630) 

More important for our purposes, however, is the pressure induced by a time- 
dependent flow-since the potential flow velocity, (79) and (80), contributes nothing to the 
drag force (per d’A1ember-t and his famous paradox). Thus, considering u, and uC to be 
time-dependent (and, for the time being , given), we use (67) to obtain the acceleration 
portion ( p:‘) of the shell pressure field, viz., 
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(81) 

which, when evaluated at r = R, gives the pressure force on the core (by the shell) and 
when evaluated at r = R., gives the pressure force on the host (by the shell), only the first 
of which we will actually use-as follows: 

Recalling that pressure acts only normal to any boundary, the force on the core in the flow 
direction (2) caused by <” is -p,“(R,,B)cosB, and -<A(RC,tl)cost3(RCsinf3dt3)(RCdq3) 
integrated over the surface of the (inner) sphere gives the ‘drag’ force: 

F," = R," J I-P$(R,,e)cosesinBde~~ 
0 0 

(ci,Rs' - i,R;)R, + 
(is -li,)R;R, 

2 
n 

=2nR,2p, 
R,” - R,’ I (308~ esin ede 

0 

a result that we shall use later in the equations of motion. 

Fig. 6 shows the pressure isobars for the case il, = 1, ti, = O,p, = 1, RS = land R, = 0.9; 
the shell is accelerated toward a motionless core-and we emphasize that this is only a 
‘snapshot’, i.e. it only applies instantaneously, since relative core-shell motion must occur 
for t>O. Fig 6 also shows the corresponding streamlines (y)-here for 
u, = l,ui = O-which of course neglects any relative motion between spheres. [It 
corresponds to the instantaneous potential flow given by (78)]. 

2. Potential flow in the core and the host 

Similar, and simpler analyses can be applied to both flow in the core and flow in the 
host-using (of course) the same boundary conditions at r = R, and r = R,; viz. (77). 

The results are 
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4~~ = cl,rc0se , (83) 

e.A z -p, dt = -pCQ-cos8 , (84) 

ijH = uHr+ ( 'H -11.~)~: 
2r2 

case , (85) 

and cOse, (86) 

where we will be interested in cA(r = R,), which gives the force on the shell’s inner 
surface caused by an accelerating core-and in P,” (r = R,) which gives the force on the 
shell’s outer surface caused by an accelerating host fluid, both integrated as above for F,” . 

Before actual utilization of these results, a few clarifying remarks may be in order: 

1. Even though this is a potential flow analysis, the resulting pressure forces are also 
present in the actual, viscous, case; i.e., accelerations at the boundaries cause 
potential flow forces in the full Navier-Stokes equations. 

2. The first term (-r) in each pressure equation corresponds to simple ‘free-stream’ or 
‘solid body’ bulk acceleration; i.e. it corresponds to 

aP/& = -ph, giving P = -pi2 = -pLir cos e , 

where the same force in (81) is merely ‘complicated by the geometry’-and by the 
existence of two separate ‘free-stream’ accelerations. 

3. The second terms in the pressure equations (those - l/r” ), always involving 
differences in accelerations, will be seen to be manifestations of the so-called “added 
mass” effect that always occurs when an object is accelerated through a fluid-the 
details (and fuller appreciation of which) will show-up later, when we write the 
equations of motion. 

4. The pressure in the shell (and the force on the core) becomes quite large in the case of 
a thin shell [this, paradoxically perhaps, in spite of the (still true) fact that the 
velocities in both core and shell tend toward zero when R, + R,-as 

discussed earlier.] For R, + RS, (81) becomes (for R, = R, = R and 6R = R,y - R,) 
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pA ~ -P., cm 0 
s 3 [r+$-$J(-&)(~,y -ic) ; (87) 

the difference in accelerations is amplified by a factor that -+ 00 as 6X + O-a result 
that will soon be seen to be potentially significant (because it shows that the core 
tends to ‘follow’ the shell). 

5. An interesting ‘sidebar’ is the following: purely potential flow past a liquid sphere 
would cause a dynamic pressure force that would distort the shape (from the u. Vu 
terms). Thus, when we speak of transients involving potential flow, they must be 
actually regarded as occurring at low Reynolds number (!), so that the dynamic 
pressure-relative to that caused by free-stream acceleration and added mass-is 
neglegibly small. This in turn seems to require, e.g., CL; << z&R in general-an 
inequality that is probably only ‘sometimes’ satisfied in the laboratory. 

C. The solid sphere 

Because the ultimate equation of motion that we seek is a really complicated one, it 
seems useful and appropriate to ‘sneak-up’ on it via a sequence of simpler problems. Thus, 
we begin with the ostensibly simple problem of applying f =ma to a small, solid sphere 
in the linear (Stokes) flow regime. After discussing the additional features present when 
small nonlinearities are present (Re > 0 but still ‘small’), we shall move on to a simple 
drop and, finally, to the principal object of interest-the compound drop-whose treatment 
will be, unfortunately, incomplete and even somewhat speculative. 

1. Equation of motion for Re = 0 

The (not-so-easy-to derive) equation of (vertical rectilinear) motion for a simple solid 
sphere in an unbounded quiescent and (very) viscous (Re -C-C 1, for all time) fluid starting 
from rest is (z is upward, gravity downward) 

$IIx3pSti = f(t) + $rR3(p - p,)g - 6nR,u 
I 

2zn 
+ II(-P~(R,B)cosB)R’sinedBcl~ , 

00 

038) 

where P,~ is the solid’s density and p the fluid density (v = pulp is the kinematic 
viscosity), andf(t) is an arbitrary z-directed ‘body force’ on the sphere (which we shall - 
henceforth take to be zero). The total pressure force caused by the accelerations is easily 
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evaluated from (86) withli,, = 0, ti,? = ti, and p,! = p to be [or use (82) with 

R, -+ 00, R, = R, ti,, = 0, il, = il, and p, = p] : -s7tR3pb, to give 

$iix?(p,~+~p)i(=4nX3(p-p,~)g-6~R~ u(t)+Rj 
C 

li(z)dz 
I .Ilnvo ’ 

(89) 

where the term “added mass” now makes more sense; the force on the sphere caused by its 
acceleration relative to the fluid must also accelerate some of the surrounding fluid, with the 
net effect looking like the sphere itself has a larger ‘effective’ mass-in this case (a sphere) 
by one-half the mass of the displaced fluid. 

Finally we come to the most difficult term-the integral term. Also called the history 
term or the Basset term for one of the early investigators (but see also Michaelides 
1997-for alternate attributions; e.g., Boussinesq beat Basset), it properly accounts for the 
use of a steady Stokes drag term, 6zR,~u(t), during a transient situation-and we note 
that the recent past is more heavily weighted. It accounts for the time-dependent viscous 
diffusion of momentum from the sphere to the fluid-owing to the additional friction in the 
‘boundary layer’. 

It is of some interest to examine the initial acceleration for this ‘free-fall’ problem: 

h(O)= p-ps g , 
Ps+iP 

(90) 

which is a potential flow result that correctly describes a viscous problem. 

It is also interesting-although digressionary-to derive, from (89), the implied 
ordinary differential equation (ODE) that one might intuitively expect from applying 
f = mil, rather than the IDE (integro-differential equation) that is (89). The derivation is 
non-trivial and involves applying Abel’s theorem-see e.g., Basset (1910) for details. 
Here we present only the final result: 

[4S’(P, + i P,]” 
67LRJl 

ii+2 Tx)(p,++p)-3nR3p ti+67cR/u= 
[ 1 
6nRp40) - +R3(p - p,)g 1 > 

(91) 
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about which the first thing to notice is that the l/& singularity is only absent if 

Q)) = ll:p = 2 6R2(P - P) 
r9 P 

s which is a trivial case, with solution u(t) = U(O) = u;! The 

next thing that is apparent from (91) is the existence of ‘negative damping’-i.e., 
instability-if the coefficient of the damping term, L(t) becomes negative. I.e., the 2nd- 

order ODE above admits an unstable (exponentially growing) root if $p, + +p) < 3p , 

or (92) 

which tells us (at least) that we had better not try to integrate (91) numerically for the 
situation of most interest: p = p,. We must attack (89) for a sphere that is too ‘light’. Why 
can Newton’s second law generate an unstable ODE? The brief answer is that it cannot; the 
unstable root is a spurious root that was introduced by raising the order of the equation. 
For more details on this issue, see Gresho et al. 1998. And this brings us to the final point 
regarding (91); it is not very difficult to find an analytical solution-which is 

u(t)= u; JI 3 (93) 

which satisfies U(O) = 0 and (90) and is stable (!) for all values of p and p, where 

&3L;? = $P 
(p, +pp>* [ 3p 

-2p&$Jgziq] ’ 

the + sign taken for ;1,, - sign for &. Even though these X s may be real or complex with 
the real part positive or negative, it turns out that (93) is well-behaved (stable) for all values 

of pandp,, and always u(t) + U$ as t + 00. The rate that u(t) approaches ~1; is, 
however, not as simple as one might first imagine. Both added mass and the history 
integral have a significant effect on the transient. If the history integral is neglected in (89), 
the solution is simple exponential, e-@, with time constant 

7 =2R2(Ps +ip) 
H9 p ’ (94) 

whereas if both history and added mass are neglected (the naive approach to the sphere’s 
equation of motion), (89), gives 
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(95) 

Thus, if p << p,, (the fluid is a gas, for example) the simplest equation is a good 
approximation. Neither approximation is very accurate, however if p = p, or p << p,, the 
first of which is our case, and samples of which can be seen in, e.g., Hjelmfelt and 
MO&-OS (1967), MO&OS and Lai and (1969), and Clift et al. (1978). Both added mass 
and the history term are retarding in their effect on u(t), with, usually, the history term 
being the more important. In all cases, however, we must have Re(rG) < O(l), in order that 
the linear equations apply-although the added mass effects are present for any Reynolds 
number. 

Before moving on to the fluid drop, it is worthwhile to generalize (89) for the case of 
a (still unidirectional, vertical) prescribed time-varying fluid velocity, say uH(t). This 
requires the use of (86), withp, = p, R, = R, and tis = ti . It also uses relative velocity in 
the viscous term, and it is 

+$JLR~~[z&, + $(li, - ti)] , 

where we have placed all of the potential flow/acceleration forces on the RHS, for clarity 
(the ci term, of course, can be moved to the LHS to recover the added mass effect); viz., 
the new forcing term owing to acceleration of the host fluid consists of two parts: (i) the tiH 
term from the free-stream/solid body acceleration, per (86) and the discussion (remarks) 
below it, and (ii) the $UH term from the added mass effect-for a total of $ci,(x$~R~p) 
as the total driving force from the host fluid. Added mass, a purely inviscid phenomenon 
that is also present for viscous flows, always involves a difference between two 
accelerations. To summarize these effects: 

(1) The term mciH(m =fluid mass) is simply the effect of the P = -pzti, force on the 
sphere from the ‘free-stream’ acceleration; a ‘global’ pressure field whose gradient 
is spatially uniform. 

(2) The additional $nli, is caused by the additional pressure force which itself is 
caused by the additional acceleration of the fluid in the neighborhood of the sphere 
(not uniform in space). 
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(3) $rn~; is truly the added mass: the inertia effect on II of accelerating the fluid mass in 
the neighborhood of the sphere, which, of course, is still present even if ilH = 0. 

(4) If ~1~ is varying in space as well as time, additional effects (Faxen correction terms) 
enter; see below. 

2. Nonlinear (Re > 0), effects, nonuniform far-field flow 

These additional ‘real-world’ complications are really that-so much so, in fact, that 
our discussion will be quite brief, referring to the extant literature and summarizing some 
brief-but-relevant portions of some of it, beginning with an important paper by Maxey and 
Riley (1983), (see too Maxey 1993) in which they corrected previous published errors and 
provided a correct equation of motion for a spherical particle in a non-uniform flow (in time 
and space) that is, however, still restricted to the linear (Stokes) regime. The most 
important addition to our Equation (89), is, besides the extension to 3-D, the effects of 
non-zero curvature ( V2u, basically) in the fluid flow field. This leads to the so-called 
Faxen correction terms (see too Kim and Karrila 1991) that must be added to three terms: 
the added mass term, the steady Stokes drag term, and the history integral. See the 
references for details. 

For Re > 0, Lovalenti and Brady (1993), have extended these results to small, but 
finite Reynolds number (Re<l), and to shapes other than spherical. Among many, one of 
their key conclusions of interest herein is that nonlinear effects hasten the approach to 
steady-state-especially on the longer time scale [t > 0( R2/v), the diffusional 
timescalel-owing to advection in the wake vis-a-vis radial diffusion. For small times, the 
transient Stokes solution is acceptably accurate. Thus, Equation (89), is probably pretty 
acceptable for most of our purposes-when Re<l. 

D. The simple drop in Stokes flow 

The simple drop is actually quite far from ‘simple’ in the time-dependent setting. In 
fact, there are no closed form solutions available-even for the simplest case of release 
from rest in a quiescent fluid, via gravity. There is even (again-as for the easier case of a 
solid particle) a history of erroneous analyses, oversights, and---eventually--corrected 
versions. Thus, Sy and Lightfoot (197 1) made the first attempt at a transient analysis of a 
simple drop-but, because of an oversight during nondimensionalization, their results are 
only valid when the two fluids have the same kinematic viscosities, which‘ 
* lui/pi = ,LL,/P, . The ‘problem’ with a 2-fluid system, and the problem not solved by 
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these authors, is that the 2 tluids will generally display 2 different ‘spinup’ rates because of 
the generally disparate diffusional time scales zi = vi/R”, z, = vO/R2. (See Michaelides 
(1997) for further discussion of historical ‘errors’, and their corrections.) Chisnell (1987) 
recognized this issue, and corrected it-at least in the Laplace transform domain. But, in 
contrast to the solid sphere case, it is (ostensibly) not possible to find an analytic inverse 
and thus a closed-form solution in the time domain. Hence, the ‘global’ equation of motion 
for the spherical drop is, unfortunately, not available in any simple form. Another of 
Chisnell’s results is more directly useful, however: he showed, as we did above for the 
steady state case (drop falling at terminal speed), that the transient Stokes case also does 
not ‘upset’ the normal force balance on the surface, with the desirable result (again) being 
that a spherical drop remains spherical for all time (for Re = 0). This result is consistent 
with one by Koh and Leal (1989), in which they performed a stability analysis of the 
steady state translating droplet (at ur) by perturbing its shape (to prolate or oblate 
spheroids) and determining if it returns to spherical. For small perturbations, the shapes did 
return to spherical-which is consistent with Chisnell’s transient analysis. 

The closest thing available for the global equation of motion of a ‘falling’ drop is 
given in Lovalenti and Brady (1993) as a formal (integral) solution. (See also Michaelides 
1997.) Here we present our version of Newton’s second law for a translating (at Ui) drop 
in a moving fluid (at ZL,) that is only ‘mostly correct’, but still (we believe) somewhat 
useful-as will be its generalization to the compound droplet: 

$R3piili = $xR3(p, - pi)g - 67cp,R. % + “A,, 
l+“A, 

u, - u, + R I 
uii(T) - Li,)(T) dz 
+qm I (97) 

+$~R~p,,[li, + +(ti, - ii)]+ c(t) , 

where c(t) is a ‘correction’ term (not explicitly known) that includes a new history integral 
and is hopefully ‘small’ in some sense. We have encouragement in this “hope” from 
Lawrence and Weinbaum (1986), who analyzed the equation of motion of solid spheroids 
and concluded that the correction term is “...in most cases . . . very small.” Also, in Yang 
and Leal (1991) who ‘introduced’ the new memory integral term for the liquid drop and 
showed a modified ‘Basset’ history integral term, (albeit with a similar non- 
dimensionalization error that negates some of their results), is stated, “It is, however, 
worth commenting that the qualitative dependence of the total memory function, modified 
Basset plus new term, is very simihar to the (original) Basset memory term for the entire 
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range of t . ..‘I. Finally, as this equation is merely a ‘stepping-stone’ to those of the next 
section, we now drop the simple drop (splat!). 

E. The compound drop in Stokes flow 

Speculation and approximations necessarily increase as we move closer to our final 
objective-to determine the fluid dynamical behavior of a core and its shell (both assumed 
spherical) as they move about (albeit unidirectionally) in the host fluid. We in general must 
consider 3 different densities and 3 different viscosities. Mass transfer-in the form of 
solvent loss by diffusion from the shell to the host, which also affects the fluid properties, 
including surface tension, should be accounted for as well. The changing rheology of the 
shell, including non-Newtonian behavior, should also be included. 

But we are not yet smart enough to accurately describe-r even to model-the 
appropriate physics, and physical chemistry. Thus, we shall continue to assume constant 
property Newtonian behavior in the Stokes flow regime. Even this modest and simplified 
approach can only be approximately described, unfortunately. 

1. Equations of motion 

Building upon what is known about simpler systems, and guessing a bit about what 
is not known, we put forth the following approximate equations of motion for c&e and 
shell, beginning with the rather stringent assumption that the two are concentric and thus, 
actually only apply ‘instantaneously’-unless they never stray far from concentricity. Also 
required is a simplified initial condition: U, = LL, = ~~(0) to avoid the complicating 
introduction of Dirac delta functions and related issues. These restrictions, however, will 
not preclude our learning some things about the transient response of such droplets. 

Core equation of motion: 

(98) 

which merits a few explanatory remarks: 
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1. K,, is a (steady Stokes) factor (2 1) that attempts to account for the fact that the shell 
fluid is not unbounded. It is a “wall correction factor” that, for a rigid (no slip) 
surface at the shell’s outer radius, looks like that shown in Fig. 7 and in Equation 
(99) below, from Happel and Brenner (1965), and is a strong function of radius ratio 
and a weak function of viscosity ratio. While Kc,y is not readily available for the 
liquid-liquid interface, although it is given implicitly in Sadhal and Oguz (1985) for 
the more general (eccentric) case, we will assume that it is not too different from the 
known result for a rigid boundary (A = ,uC/,u,, as before, and r = R,/R,): 

(99) 

showing a very strong viscous effect for thin-shelled drops-another part of the 
answer to the question, “Why does the core stay in the shell?” Note that experimental 
results also support the contention that thin walls favor robustions/stability (Hamilton 
(1997-p.6). In fact, for R, + Rs = R and R, - R, = 6R, the r + 1 limit of (99) is 

2. &H> in the ‘friction’ term between core and host, is available in Brunn and Roden 
(1985), also for the steady state case. It is, with r = R, I R, and pU E pi I pi, 

2,uu,, + (1- r)(3 + 6r + 4r2 + 2r3)f(r) 

4&&f + 2&$ + Pcff)(l - r”)(2 +r+2r2)f(r)+(1-r)‘(4+7r+4r2)f(r) ’ (lo’) 

wheref(r) = l/( 1 + r + r2 + r3 + r’). Note that KcH also becomes unbounded, 
like O[l/( 1 - r)], for R, + R, ; thin shells cause large forces and, as mentioned earlier, 
these tend to reduce the flow toward zero in both core and shell nnd keep the core inside the 
shell. 

3. The last term, of course, is from the potential flow analysis-see (82) and (96)-and 
includes the effects of free stream acceleration and, in the difference’ term, added 
mass. 
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4. Omitted completely is the analogous so-called “correction term” for the simple drop, 
per (97), on the assumption that it is not too important. 

Shell equation of motion: 

11, - us + R, 
I 

f U,(z) - l&(z) 
dz 

I 
- 671;uHRs KsH . X+pA, 

J+Tm l+% J 
’ Li,(z) - ‘f,(‘) & 
o &GF3 I 

+~~R;pH[U, + +(z& - u”)] - $nR;p,li, , (102) 

which clearly requires more remarks: 

1. 

2. 

3. 

4. 

In both the buoyancy term (buoyancy minus weight, actually) and the potential flow 
(acceleration) term, the signs of the core fluid forces on the shell are opposite those of 
the host fluid forces. In the former, it causes a downward ‘buoyancy’ force and in the 
latter a ‘reaction’-force to the free-stream acceleration of the core-see (84) and (81), 
wherein now the pressure force at r = R, is +cA( R,,B)cos6. 

The other potential flow force (free-stream plus added mass) from the host comes 
from (86). 

The Kc3 term acts on the shell with opposite sign to that for the core. 

The friction factor in the term between shell and host, KsH, is available for steady _ 
concentric spheres in Sadhal Oguz (1985) (implicitly), Brunn and Roden (1985), 
and, more explicitly in Rushton and Davies (1983), whose result we shall use 
(r = R,/R, and psH = &/pu, , still): 

where 

and 

/;,-,,.%+F =3.~‘“+6Ka’G(r)+~,H’(2+311~H).F(r) , 
(103) 

SH ,UCH+~&H . G(r) + 2&, c1 + &H > ’ F(r) 

F(r) = (1 + r)(2r2 + r + 2) 
(1- r)(4r2 + 7r + 4) ’ 

G(r) = 
1-r’ 

(1 - r)3(4r2 + 7r + 4) ’ 
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The function fsH properly tends to the simple drop limit, &frH = %+&H for r + 0 and to 
W4H 

&, + 1 for r + 1, the rigid sphere case (because the flow in core and shell is then zero). 

One of the immediate uses of the core and shell equations of motion is to estimate the 
initial accelerations (k,” and ti;) and time constants of the system. Thus, omitting the 
history integrals in (98) and (102) and transposing the ‘added mass’ terms to the left sides 
yields 

for the core, and 

$+: - R;)p, + + R:p,]Li,” G $‘i[pHR: - p,(Rj - R,3) - p,R$ + 6q,RcKcs. . 

for the shell. Noteworthy for R, + R, is the powerful influence of the shell on the core; 
i.e., (104) then becomes ti,O G ti:-the core follows the shell, a purely invisid (potential 
flow) effect. 

Setting the generally unknown kT{ to zero and solving for the two initial accelerations 
with u,” = u,” = ~1; yields 

and 

PC + Ps * %:-i$ .[R~P, -(R,’ - R:)ps - R:P,]- %P,(P, -PC> 
Liz = s c 1 

c 
$;+$ .[(R; - R2)ps +#P~]+$$-~;~ p,p, g 

1 
(lo7) PC + Ps * 

s- c s ‘ 

where we point out that the appropriate limiting case for both core and shell,- 
‘, + (PH - PC)&? f + p,) for R, + R, , per (90), is recovered. 
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Finally, omitting the drivin, 0 forces and seeking solutions to (102) and (104) of the 
form u - c-“’ yields the two (initial) time constants; 

where 

and c=k,k,-k,T, , 

where 

where 

and 

a*= $+= / 
-b?&%ii 

- 2a ’ 

a = mcms + mscmcr , 

m, = $[(Ry - Rz)p, +$R:p,], 

W3) 

(109) 

(110) 

(111) 

(112) 

(113) 

(116) 

(117) 

(118) 

(120) 

Since it will turn out that kcH << k,, and ksH << k,, because the core-shell coupling is 

very strong, it is of some interest to present and examine more closely the full ODE 
solution to (104) and (105) under these conditions-which of course neglects two 
important points: (1) the history terms will reduce the response rates and (2) the core will 
generally not remain centered. Thus, for small kCH and ksH with u,(O) = u,” and u,(O) = us” 

given, uH given (and constant) and g = 0 (for simplicity), 
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Ll,(t>ZLL[,(l -CA-‘)+ (5 + q,J4 + (m,y - m,)u:( e-L-r + (9. - q.&~ - 4) e-d+r (121) 
m, + m,, + m,s - m,, mc + mcv f my - msc 

us (t) z U,(l- e-h’) -I- (mc f mcJ4 + (m,y - m,,)~:: e -L-f + (mc + %,(4 - 4) -,I+! e , 
(122) 

m, + m, + m, - msc m, -l-m, +m, -msc 

where A+ 2 kc,, . ml2 + m, + m, - m,, (123) 
mcm, + mscmcs 

and a-2 kcH f ksH 
m,+m,+m,-m,,’ 

about which the following remarks are relevant: 

(124) 

1. 

2. 

3. 

4. 

A+ is the ‘fast’ transient because k,, is much larger than kcH and ksH. Ergo, h is the 
slow transient (a- << a+). 

If u,” =u,” =u,, the solution for both core and shell is simply 
u(t) s u, 8-’ +u,(l-e-a-‘). 

The fast transient causes a rapid equilibration to the long-term, slowly-decaying 
solution, 

n,(t) = u,(t) = uCg e-‘-‘+ u,(l- eAA-‘), where uC4 is the ‘equilibrium’ velocity, 

u _ cm, + mcs>“: + cm, - msc)“: 
‘q - m, +m, +m, -m,, 

The main point of all this is this: the core follows the shell as it is moved about by the 
host fluid. 

We will attempt to utilize these and earlier results later. Now we move to the last 
‘theoretical’ issue to be addressed in this paper. 

2. Core centering 

One of the seemingly-omnipresent and very fortunate aspects of the dynamics of 
compound drops that is, unfortunately, not yet fully understood theoretically, is the 
following: ‘excitation’ of the shell, in a variety of manners, including: stirring the host 
fluid, heating the host fluid, tumbling the compound droplet via motion of the host fluid, 
acoustic oscillations, or even impulsive loading and perhaps simple gravitational settling,‘ 
all tend to cause the core to become centered-or close to centered-in the shell. This piece 
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of ‘good news’ is, of course, one of the ‘drivers’ of the microencapsulation route to 
making spherical targets. 

Whereas we shall later add our own contribution to the core-centering phenomenon, 
in this section, we shall describe what has been observed and, partially, what has been 
done to help explain the observations. 

Saffren et al. 1982, who performed experiments in a neutral density tank with water 
as the shell fluid and silicone oil as core and host, state: “Though this centering 
phenomenon takes place within a few cycles of oscillation (at the mode 2 frequency), the 
centering force seems to depend, among other things, on the oscillation amplitude and the 
shell thickness.” 

Using acoustic levitation of a compound drop in air, Lee et al. (1982) found that the 
centering effect is much stronger for small (sub-millimeter) than large (several mm) drops. 
“When the frequency of the amplitude modulation is tuned to the natural oscillation 
frequency of the compound droplet system, a large amplitude oscillation of the liquid shell 
is produced driving the core to the center of the system in a fraction of a second.” And, 
referring to this study, Kendall (1986) states: “In another oscillation study involving 
substantial density mismatch, the forced oscillation of an acoustically levitated, lightweight 
hollow glass shell (p ~5) thickly coated with a low-viscosity liquid (H,O), induced 
centering, showing that the forces attainable by means of oscillation are very strong”. 

A nice summary of experimental results is provided by Lee and Wang (1988): “Many 
experiments have indicated a tendency for a compound drop in oscillation to become 
concentric. In a zero-gravity experiment (using a NASA KC-135 aircraft), water droplets 
with injected air bubbles consistently assumed concentric spherical form (T.G. Wang and 
D.D. Elleman 198 1, private communication). Free-falling hollow liquid shells, about 1 mm 
in radius, produced by annular jet instability, tended to remain concentric. In an acoustic 
levitation experiment, the hollow shell produced by introduction of air into a 1 mm drop 
was found to resist breakup when oscillation was induced. It has also been demonstrated 
(Saffren et al. 1982) in a neutral buoyancy tank that a compound drop formed of 
immiscible liquids becomes concentric when excited into oscillations. A similar effect has 
been seen when a layer of liquid coatin, 0 a small solid sphere in acoustic levitation was 
forced into a capillary oscillation.” They then go on to generate an inviscid model for a 
liquid shell (gaseous core and host) that was later found not to agree well with experiments - 
(see below). 
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In some acoustic levitation experiments performed aboard the space shuttle 
Columbia, Wang et al. (1994) performed experiments with both liquid and gaseous cores, 
liquid shells, and a gaseous host. They concluded that, even for the simplest case of a 
liquid shell with gaseous neighbors, any purely inviscid theory was invalid-the system is 
highly damped. “The observation seems to suggest that as far as the nonlinear effect called 
centering is concerned, viscosity should be taken into account in order to obtain a realistic 
prediction.” 

Another paper that cited failure of purely inviscid models is that of Lee et al. 
(1996)-again for the simple case of a gas bubble, a liquid shell and a gaseous host; 
“...Therefore, a free oscillation is not efficient in bringing about centering, because the 
centering force decays in time before centering is complete,” and “Centering can occur only 
if the capillary oscillation is sustained by an external source, such as a modulated acoustic 
field.” 

Unfortunately, there is still not available a viscous analysis that has proven to be 
successful in explaining the physics of core-centering. The ad hoc model of Norimatsu-in 
this volume-is, however, a potentially-winning candidate, even though it is not derived 
from so-called ‘first principles’ (Navier-Stokes equations). 

V. Applications 

Finally, we will apply some of the above theory to the area of interest to ‘target 
fabricators’. Realizing that our compound droplet is quite a moving target (before it 
becomes a final stntionnry target for the laser beams!) because of the significantly time- 
varying composition of the shell (in addition to droplet motion), and admitting that some of 
the physical properties are not very well known, we will base most of our calculations on a 
so-called nominal case in which the following description applies: R, = 0.098 cm, R,, = 
0.109 cm (R,/R, G 0.90). It should be noted that encapsulated droplets generally have an 
oil wall thickness of 150 to 250 pm as initially formed, depending on the polymer 
concentration and desired final (solid) wall thickness. As the dilute polymer solution loses 
solvent, a final dry wall of 20 to 30 pm is formed. Our particular choice of R, - R, 
(1 lOElm) in these examples is meant to represent some ‘midpoint’ in the drying process for 
a NIF-scale shell, although it should be born in mind that RJR, actually could vary 
between -0.98 to -0.77. We will also use R = 0.1 cm when dealing with a simple drop. 
The nominal properties are (cgs): 
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P(gm / 4 

P(poise) 

y(dynelcm) 

Core Shell Host 

1.00 1.01 1.00 

0.01 0.1, 1, 10 0.01 

10 10 

in which it is clear that the shell’s viscosity is highly variable, and clearly depends upon the 
initial polymer concentration and degree of drying. The densities we have selected are at 
best approximate, but as has been pointed out the key dependencies are on the density 
difSerences across interfaces, and in this regard 0.01 g/cm3 is a reasonable estimate. Note 
also that while we have used a value of 10 dynes/cm for the inter-facial tension, the actual 
value will clearly depend upon the solution compositions and may range from = 1 to 30 or 
more. 

A. Static droplet in a density column 

Equation (20) gives the MOOR for this case. Choosing an easily attainable value for p 
of 0.01 cm-‘, gives MOOR E 0.025~; not a problem. 

B, Terminal velocity and loss of sphericity 

1. Stokes flow 

The ‘effective’ droplet density (p) for a simple drop is obtained from 

j?R: = p,Rz -I- p,(Rz - R,‘), as p - 1.0027 (changing p, to 1.02 changes j? to - 1.0055) 
and, from (43) and (53) we have 

in which the right-most equation assumes that the shell viscosity ‘dominates’, which is 
probably a good guess since its viscosity is large (say 1 poise). Thus, 

0.653 cmlsec < U,,,,,Pou,,d < 0.655 cm/set , 

giving a terminal Reynolds number of Re = uRl vH G 6.5, which, unfortunately, 
somewhat vitiates the assumption of Stokes flow. To have Re < 1 requires u < 0.1 cm/set‘ 

48 



which would require Ap <- 0.0005 which is hard to obtain. Thus, if terminal velocity is 
reached, we may be somewhat out of the range of Stokes flow. 

2. Re > 0 (Navier-Stokes flow) 

If we apply (58) to this nominal case, we get (for pu, = 1) uT = 0.35, giving 
Re z 3.5 a little better, and probably more accurate. 

For a final free-fall estimate, we recall that thin-shelled compound droplets behave 
more like solid spheres than simple drops. On this assumptions, we can get a good estimate 
of z+ from some correlations given in Clift et al. (1978), as follows: 

(1) Compute No = C, Ret = 4pApgD3 /~,LL~, 

where C, is the drag coefficient and D is the diameter. Inserting our parameters gives 
No z 314. 

(2) A curve-fit equation that applies for this value of No then gives Re,: 

log,, Re, = -1.7095 + 1.33438 log,, ND - O.l1591(log,, N,)2 

= 0.899; a Re, = % = 7.93 3 

LiT - 0.40 cm/set, agreeing quite well with our earlier estimate-even though the definition 
of Reynolds number is a factor of 2 different. (Most seem to use the diameter as the 
characteristic length.) 

3. Droplet shape 

Applying now (59) using u = 0.35 cm/set and admitting to a Reynolds number that 
is somewhat larger than it should be in order to believe (59), gives 

which is probably tolerable-but barely, and worse yet if y is smaller. 

For what it’s worth, we shall also use one of the results of Brunn and Roden (1985) 
to estimate the compound droplet’s shape; in their Fi g. 6 is shown a “typical” set of shape 
factors: 

r,(O) = R,[l- E, P,(cos@] 

and r,(O) = &[l+ E, P,(cos8)] 
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where E, and E, are very complicated functions of the problem parameters. For the 
“typical” set shown in their Fig. 6, we get, using R, I $ = 0.9, E,Z 0.083RgTuf I ysH and 
E,S 0.056R,p&y,. For our nominal case, (and u, = ~1, = 0.35) these give 
E,Z 1.1 x 10q, E,S 6.7 x 10e5, and thus 

MooR,~ = 2[5.(~/2)-r,(O)]= 3 E, R, G 0.36/m 

and MOOR, =2[rc(0)-r,(n/2)]=3~, R, ~0.20~ ' 

the latter being a prolate spheroid. It is reassuring, at least, to see reasonable agreement 
with the simple drop result from the Taylor-Acrivos theory; it tends to lend credence to 
each. 

These results seem to say that freely-falling droplets (in a drop tower, for example) 
can probably be made to meet the specs-it depends mostly on the ‘control’ of Ap. 

Taylor and Acrivos (1964) also give an equation for the effect on the drag force 
caused by shape deformation. It is, however, not of any importance for our 
purposes-being a “second-order” (or less) effect on droplet dynamics and terminal speed. 

C. Droplet shape in a linear shear flow 

Assuming a beaker whose contents are stirred at a frequency of 1 revolution per set 
cf= 1Hz) gives a shear rate of G=276f which gives, using (61), MOOR = 4 x .Ol x 2~ 
x (O.l)* /lO = 2.5 x 1O1’ cm = 2.5~) which could be a problem. 

D. Capillary waves 

1. Inviscid simple drop 

The mode 2 frequency from (69), is wi z 220sec-’ for R = 0.1; a 35 Hz frequency 
with a 29 msec period (T = 2x/o). 

2. Viscous simple drop 

Using (72) and (74) for n = 2 yields Aw, f 20sec-’ and O, z 200sec-’ 

(T = 27r/w z 3lmsec). For pi = & = l(10) poise, A.w, 224 (25),0, - 196 (195) and 
q 5 32 (32) msec; i.e., the damped frequency it is not very sensitive to&. Also, it is not 
much smaller than w:. The damping time constant, from (75), is 2: z 15,1.5,0.13 msec, for 
& = 0.1, 1, 10 poise, respectively. The viscosity of the shell has a strong effect on the- 
damping rate (linear in lu, for pu, >> p,). But perhaps the most important result is that the 
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damping rate is quite strong i.e., the 29 - 32 msec period of oscillation will be quickly 
damped out by viscosity. This is probably a very good result because it tells us that droplet 
oscillations-or droplet dynamics in general, most likely-will not have much effect on 
loss of sphericity. 

3. Inviscid compound drop 

Noting the rather small effect that viscosity had on the natural frequency of a simple 
drop permits us to more confidently use the inviscid compound drop results of Saffren et 
al., (1981). Thus, inserting our nominal droplet parameters into (71) yields the following 
~~2’~1.30,i14~2)~l.30,4zl.34,&~1.06,C,~2.4x10-5, giving wy’E368secV’(59Hz) 
and w:*’ = 126sec-‘(20Hz); i.e., the bubble mode’s period is -17 msec and that of the 
sloshing mode is -50 msec. For comparison, the “thin-shell” frequency, given by (68) 
withy = y, + y, = 20, gives 0: = 309sec-‘ , fairly close to the bubble mode (with no 
sloshing mode). If we had equivalent results as from Miller and Striven (1968) for the 
simple drops, and we ‘almost’ do from Landman (1985), they would most likely tell us the 
‘same thing’; i.e., capillary waves are too ephemeral/evanescent to matter much. Don’t 
worry that some jostling of the droplets will harm the MOOR-unless perhaps it persists 
through the entire solidification process. 

E. Initial accelerations 

A simple (solid) drop with the equivalent density of p = 1.0027 when released from 
rest will have an initial acceleration given by (90) as ci, = (1.0027-l.Ol)/( 1.01 + 0.5) g = 
-0.0048g; i.e., it will begin to fall with an initial acceleration of --4.74 cm/set*. At this 
rate, in one second its speed of 4.74cm/sec would far exceed the terminal velocity of 
uT = 2R*gAp/ 9y, z 0.6 cm/.sec. Thus, the ‘response time’ must be less than 1 
second-as we shall soon verify. 

The corresponding compound droplet’s acceleration from rest, from (106) and (107), 
is ti,” E--O.O0089g=-0.87cm/sec2 and Li,O +.0027g=-2.64cm/sec2; the shell wants to fall 
three times faster than the core which, if surrounded fully by the ‘shell’ fluid, would 
actually want to rise, with an initial acceleration of Liz = (p, - p,)/(p, -I- +p,)g =O.O066g 
~6.5cm/sec*. The free-stream (+ added mass) acceleration effect of the shell on the core 
causes the reversal which, as mentioned before, would be ‘complete’ in the thin-shell limit 
in that il,” + hf for AR + 0. Of course this limit also calls into question the very meaning 
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of the shell’s equation of motion. But this limit, too, is actually well-behaved; (102) yields 
for this case-after setting tiz = L$ there-the following reasonable result: 

(p,+3p,l)li:( =(P,f -Pc)s+3P& ’ 

which actually gives the core’s initial acceleration, as required. (Note that now if p, = pH, 
this equation properly simplifies to r,$’ = $, ; the droplet simply follows the host fluid-an 
equation to which the core equation of motion also simplifies if p, = p, = pH, in that it 
yields tiz = L;;. ) 

F. Initial time constants. 

Finally, we shall employ (108)-( 120) to provide estimates of the initial ‘decay rate’ 
of the above initial accelerations. We are, of course, seriously hampered by our lack of 
detailed knowledge of the viscous coupling coefficients, K,,, KCH, and KsH, whose 
approximations we address next. 

Assumption 1: Based on the small variation in the ‘Hadamard-Rybczynski’ drag 

coefficient factor, 2/j’+Pc 1 Ps 
1+/*, /PC ) with viscosity, we shall employ the equation that would be 

appropriate if the shell-core interface were rigid (an ‘eggshell’), Eqn. (99), then reduce it 
by 25%. 

Assumption 2: We shall employ the steady-state relation of Brunn and Roden 
(1985), Eqn. (101) for KcH. 

Assumption 3: Here we shall use the steady-state result of Rushton and Davies 
(1983)-Eqn (103)-for KsH. Thus, for the nominal case (with& = 1 poise), we 
obtain Kc, ~440, KcH z .030, and KsH z 0.996. For the two extremes of shell viscosity 
(0.1, 10 poise), these become Kc, ~virtually no change, KcH ~(0.33, 0.0030), and 
KsH E(O.960, 0.999). The small value of KcH means that the highly viscous shell has 
virtually decoupled the core from the host and the fact that KsH zl tells us that the shell 
behaves more like a solid in the host fluid-again because it is very viscous, and thin. 

We will use Kc, = 330, KcH = 0.03, and KsH = 1 in our calculations. Thus, 
returning to (108ff), 
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k,,~=6nx.01x.109xl~O.0205gmlsec 

kcH = 6n x .O 1 x .098 x .03 1.0005 
k,, =6nxl.Ox.O98x330xl~610 

k,=k,,+k,~,~610 

k,=k,.+k,,~610 

mcs = F(.098)3 X 1s 0.00394 gm 

m,, = 2~(.098)~ x 1 .Ol x & = 0.0220 

m, =~{[(.109)3-(.098)3]x1.01+0.5x(.109)3x1}=0.00421 

mc = y(.098)3[1 + 1.01 x *] = 0.0220 

c = k,k, - kc. = k,,(k,,, + k,,) + kcHksH z 12.8 
b = -[m,k, + m,k, + (m, - m,,)k,,] = -4.97 15 
a = mcms + mscmcs = .000179 

:. &!I = (4.9715 1- 4.9705)/2 X .000179, giving 
T, = 36,usec, 0.39sec, 

and we note that the asymptotic estimates, given by (123) and (124), give virtually the 
same results and are thus quite accurate-because k,, totally dominates the friction terms. 
Thus, the core and shell will ‘equilibrate’ very quickly and then follow the host on a much 
slower time scale. Another way to say it is this: the encapsulated droplet behaves just about 
like a simple droplet-the core follows the shell, as usually seen in the laboratory. The 
‘effective’ equation of motion for the compound drop-at least for t > O(l/ L+)---can thus 
probably be greatly simplified to 

(m, + m,)il = $n[Rjp, - Rzp, - (Ri - R2)ps]g + (msc - m,)ci - 

671;u,R,[u - uH + R 

This equation gives an initial acceleration of 

li(0) = 
q,[.109'-.098'-1.01(.109'-.098 ')]g = -0.0018g z -1.8cm/sec2 , m,+m,+m,-m,,=.oo815 - 

which is in the same range as previously estimated. 

Similarly, the initial time constant [where now “initial” must be properly interpreted: it is 
just after the very fast transient is completed, t = O(ll;l+) z 36psec] can be approximated 
as 
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z- = mc +tns +mcr -m,vc. 
6THRs P 0.4Osec, 

again agreeing closely with the more precise theory-and we conclude by stating that the 
compound drop will act more like a simple drop-or even like a solid drop-in that it will 
follow the host fluid with a time constant of about 0.4 seconds. 

Finally, we believe that, while not explicitly proving that core centering must occur, 
the above analysis strongly suggests that the large viscous friction between core and (thin) 
shell will at least tend to keep the shell near the center. 

IV. Conclusions and Future Work 

A. Conclusions 

1. It should be possible to get up a density column that does not cause a serious loss of 
sphericity of a stagnant compound drop. (The concomitant problem of much reduced 
mass transfer rate of shell solvent to aqueous host might cause excessive ‘drying’ 
times, however.) 

2. The terminal velocity of a 2rnm drop with Ap = 0.01 will be -0.3-0.7 cm/set. 

3. Droplets at terminal velocity will be close to violating the sphericity requirements. 

4. Capillary waves at the two shell interfaces will oscillate in the lowest (4) mode at 
-3O-60Hz, but will be rapidly damped by viscosity. 

5. 

6. 

Initial accelerations in the ‘free-fall’ mode will be in the range of l-5 cm/set* 

The transient response of the compound droplet shows two modes: a very fast 
(microsecond-millisecond range) ‘equilibration’ of core and shell and a much slower 
response (-0.4 set) of the pair acting as a single droplet. The core wants to ‘follow’ 
the shell. 

7. Thin shell hydrodynamics will usually be well-described by the transient Stokes 
equations because the internal flows will usually be very feeble. 

Based on what we have learned thus far, we offer the following conclusions: 
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B. Future Work 

Recommendations for follow-on efforts are listed below, although we are not yet 
sure of their ‘priority’. 

1. The design and construction of a ‘shaky drop tower’ might be worthwhile. The idea 
here is to shake the tower early in time while the ‘fresh’ droplets are beginning their 
free’fall (or rise, depending on densities) to keep the core centered while Ap is at its 
largest value [part of the ‘design’; Ap should be largest initially and decreasing with 
time so that the droplet slows down as diffusion of organic solvent proceeds-giving 
a low terminal velocity (lower Re) later in time when sphericity is most important.] 
The oscillation amplitude would also be a decreasing function of time. This ‘design’ 
takes advantage of the large Schmidt numbers ( v/ D where D is the mass 
diffusivity) associated with mass transfer; i.e., we can simultaneously have a low 
Reynolds number [O(l) or less] and a high -Peclet number ( Pe = u,R/ 0) which 
enhances convective mass transfer. The “shaking” may be either physical or 
acoustic-and the drop tower might even be designed as a ‘closed loop’ with forced 
circulation of host fluid in order to keep the droplets in a narrow vertical zone. 

Another mechanism for core centering that might be worthwhile analysing is the 
potential flow/acceleration effects of the shell on the core when the core is off-center. 
This would require the use of bipolar coordinates and would preclude simple (‘hand’) 
calculation-but should be easily do-able via computer. 

Ditto 2 except examine, more quantitatively, the off-center viscous force on the core 
via the transient Stokes equations in bi-polar coordinates. 

Investigate the possibility of acoustic oscillations to promote core centering. 

Investigate the non-Newtonian fluid dynamics that surely must be present in the 
liquid shell-as it may seriously modify or even vitiate some or all of the 
‘Newtonian’ conclusions reached thus far. (The shell probably behaves more visco- 
elastically than as a simple, constant-viscosity Newtonian fluid). The theoretical 
investigation (and selection of an appropriate non-Newtonian model for the 
constitutive equation) should be supplemented (if not preceded) by laboratory 
measurements of the shell fluids’ rheology-including ‘later time’ behavior when the 
liquid becomes a ‘solid’, passing first through a ‘gel’ state. 
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Fig. 1 Compound drop. 
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Fig. 2 Simple Drop; Steady Streamlines (pi = p,). 
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Fig. 3 Streamlines for a Compound Droplet. 
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Fig. 4 Rising/Falling Compound Droplets- at U,. 
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Bubble Mode 

Sloshing Mode 

Fig. 5 First two modes for a compound drop. 
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Fig. 6 Streamlines and Isobars for an (upward) accelerating shell. 
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Fig. 7 Stokes’ Law Correction Factor. 
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